KMT coupling for random walk bridges

نویسندگان

چکیده

In this paper we prove an analogue of the Komlos–Major–Tusnady (KMT) embedding theorem for random walk bridges. The bridges consider are constructed through walks with i.i.d jumps that conditioned on locations their endpoints. We such can be strongly coupled to Brownian appropriate variance when either continuous or integer valued under some mild technical assumptions jump distributions. Our arguments follow a similar dyadic scheme KMT’s original proof, but they require more refined estimates and stronger necessitated by endpoint conditioning. particular, our result does not from KMT theorem, which illustrate via counterexample.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Coupling Argument for the Random Transposition Walk

This paper explores the mixing time of the random transposition walk on the symmetric group Sn. While it has long been known that this walk mixes in O(n log n) time, this result has not previously been attained using coupling. A coupling argument showing the correct order mixing time is presented. This is accomplished by first projecting to conjugacy classes, and then using the Bubley-Dyer path...

متن کامل

A Random Walk with Exponential Travel Times

Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...

متن کامل

An Invariance Principle for Random Walk Bridges Conditioned to Stay Positive

We prove an invariance principle for the bridge of a random walk conditioned to stay positive, when the random walk is in the domain of attraction of a stable law, both in the discrete and in the absolutely continuous setting. This includes as a special case the convergence under diffusive rescaling of random walk excursions toward the normalized Brownian excursion, for zero mean, finite varian...

متن کامل

Testing for random walk

We describe a method for identifying random walks. This method is based on the previously proposed small shuffle surrogate method. Hence, our method does not depend on the specific data distribution, although previously proposed methods depend on properties of the data distribution. The method is demonstrated for numerical data generated by known systems, and applied to several actual time seri...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2021

ISSN: ['0178-8051', '1432-2064']

DOI: https://doi.org/10.1007/s00440-021-01030-y